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Relationships among the existence of Killing tensors, KiUing-Yano tensors, 
and separability structures with two Killing vectors in vacuum t y p e d  space* 
times are investigated. It is proved that the existence of those objects is 
equivalent with the assumption that space-time is without acceleration. 

1. INTRODUCTION 

In recent years the theory of separability of the Hamilton-Jacobi 
equation for geodesics has become interesting in general relativity, espe- 
cially for space-times possessing suitable algebraic properties or suitable 
symmetries. A first important class of separable space-times, including 
several type-D solutions, was discovered in 1968 by B. Carter (1969). From 
the beginning, many people realized that in separability theory geometrical 
objects called Killing tensors (Hugston and Sommers, 1973; Walker and 
Penxose, 1970; Woodhouse, 1975) play an important role. The role of 
Killing tensors was further clarified by Benenti with the introduction of 
so-called separability structures of type S r (Benenti, 1975/1976; Benenti 
and Francaviglia, 1980). Other objects whose existence is related to the 
existence of Killing tensors and to the symmetries of some known separa- 
ble space-time are so-called Killing-Yano tensors, which have recently been 
investigated by Collinson (1976) and Collinson and Smith (1977) and by 
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Stephani (1978). Finally, it should be also mentioned that the Killing 
tensors appearing in all of Carter's separable space-times have Segrd 
characteristic [(11)(11)]. 

The literature on these problems is rather dispersed. In the recent 
review paper (Benenti and Francaviglia, 1980) a first unified treatment was 
presented. The aim of this paper is to point out that for vacuum type-D 
space-times the existence of a Killing tensor, the existence of a Killing- 
Yano tensor, and the existence of a regular Sz-separability structure of 
Carter's type are equivalent to the property of (V4, g ) being without 
acceleration. 2 Instead of giving a formally organized proof we shall deduce 
such equivalence from several remarks concerning already known facts. 

2. VACUUM T Y P E D  SPACE-TIMES AND SEPARABILITY 

In a recent paper we investigated the existence of Killing tensors 3 in 
vacuum type-D space-times and we proved that all such solutions without 
acceleration admit a K tensor (Demianski and Francaviglia, 1980). We 
also proved that whenever this K tensor exists it fits into a separability 
structure for (V 4, g). We recall that a separability structure of type gr in a 
pseudo-Riemannian manifold (V n, g), with n/> r, is an equivalence class of 
coordinate charts in which the Hamilton-Jacobi equation for geodesics is 
separable with (at most) r ignorable coordinates. A theorem due to Benenti 
(1975/1976, 1980) and Benenti and Francaviglia (1980) characterizes (reg- 
ular) S r structures as follows4: 

Theorem. A manifold (Vn, g) admits a (regular) S, structure if and 
only if it admits r commuting K vectors X ( o r = n - r +  1 . . . . .  n) 

~t 

and n - r  K tensors K ( a =  1 . . . . .  n - r ) ,  all of them independent, 
a 

which satisfy the following conditions: 
(i) in the Lie algebra of K tensors with Schouten-Nijenhuis 

brackets s the commutation relations 

:Vacuum type-D space-times may be conveniently classified by four independent real 
parameters, viz., mass, rotation, acceleration, and Newman-Unti-Tamburino p~ameter 
(see, e.g., Demianski and Plebanski, 1976). 

3Hereafter abbreviated K tensor. 
4For the definition of regular separability structure see Benenti and Francaviglia (1980). 
5The Schouten-Nijenhnis brackets are defined by 

�89 H, K ]gtf Hm(iVm KjO - Km(iVm Hjl) 
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I K, X 1=0, Va, b , a  (2.2) 

hold. 
(ii) the K tensors K have in common n - r  eigenvectors X 

(t  a 

such that 

X = X I X ,  b ] [ a , X ] = 0 ,  Va, b,a (2.3) 

g X , X  --0, ( a  ~1 Va, a (2.4) 

In the sequel we shall systematically omit the adjective "regular" and 
those structures will be simply called separability structures. We remark 
that from the theorem it follows that the metric tensor g always appears 
among the K tensors K. 

a 
Here we are interested in the case n=4, r - 2 ,  with g of Lorentzian 

signature, i.e., in the case of S 2 separability structures in space-time (V 4, g). 
In Benenti and Francaviglia (1979) it was shown that the metric of a 

$2-separable space-time (V 4, g) can be always reduced On so-called normal 
coordinates) to its canonical form: 

gaa= - - ,  a =  1,2 (2.5) 
(~1 "u ~2 

gai=0, ar (2.6) 

1 (~'~fltPl + ~ ' ~ 2 ) ,  a, fl= 3,4 (2.7) 
gaa = ~1 +r 

where %, %, and ~ffa are functions of the (nonignorable) coordinate x a 
only. The nontrivial K tensor Kij is then given by 

K 11--- ~21~1 K 2 2 =  r llP2 (2.8) 
~01 "~t" r ' ~jOl q-r 

Kai=o, ar 

1 
~ fl=3,4 

(2.9) 

(2.10) 

We recall that a K tensor Kij has SegrO characteristic [(11)(11)] if it 
admits two double eigenvalues, say A and B. In Benenti and Francaviglia 
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(1980), Section 6, it was pointed out that the K tensor (2.8)-(2.10) which 
characterizes a gz-separability structure in a space-time (V4, g) has Segr~ 
characteristic [(11)(11)] if and only if the following condition holds: 

det IIf~r =0 ,  a = l , 2  (2.11) 

Condition (2.11) is one of Carter's hypotheses (see Carter, 1969): it 
actually characterizes Carter's separable space-times among all S 2- 
separable space-times (see Benenti and Francaviglia, 1980, Section 6; and 
Francaviglia and Virga, 1980). 

It is a lso clear the in a vacuum type-D space-time a nontrivial K 
tensor with Segr~ characteristic [(11)(11)] can be written as follows: 

Kij=A( linj + nilj) + B( mimj + mimj) (2.12) 

where (l, n, m, ~ )  is a null tetrad associated with the GSF congruences. 

3. KILLING-YANO T E N S O R S  IN VACUUM T Y P E D  
SPACE-TIMES 

We recall that a Kil l ing-Yano tensor 6 is a skew symmetric 2-tensor f~j 
such that 

V,,,f.j+ V/f/m = 0 (3.1) 

If f j  is a KY tensor, its square 

gij( f )=fimfj m (3.2) 

is a K tensor. KY tensors in space-time have been investigated by Collin- 
son, who proved the following results: 

(i) An irreducible K tensor Kij is the square K(f )  of a KY tensor f/2 
only if Kij has Segr6 characteristic [(11)(11)] (see Collinson, 1976, Theorem 
1). 

(ii) Let us have a K tensor Kij of the form (2.12). Let us take 

L =Al/2(linj - ljn,) + Bl/2(mi~j-  ~imj) (3.3) 

so that 

K i j=  K( f)O=---fimfmj - (3.4) 

6Hereafter abbreviated KY tensor. 
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Then f i s  a KY tensor provided a=A 1/2 and b = B  1/2 satisfy the following 
conditions (in Newman-Penrose formalism): 

a(~'+~) = i b ( z - ~ )  

a ( p + ~ ) = i b ( p - ~ )  (3.5) 

a(/~+ ~) -- i b (~ -~ )  

By applying the above to vacuum type-D space-times we can easily 
find among them all those solutions which admit a KY tensor. This 
analysis was first carried out by Collinson (1976) and recently by Stephani 
(1978). However, in Collinson (1976) it was erroneously claimed that also 
the C solution belongs to the family. The mistake arose from the supposi- 
tion that conditions (3.5) are satisfied by Robinson-Trautman space-times. 
By using the table for type-D space-times given in Demianski and Pleban- 
ski (1976) to check conditions (3.5) we easily realize that all vacuum type-D 
solutions without acceleration admit a KY  tensor. This KY tensor is, of 
course, the one already computed by Collinson: its square provides us with 
a K tensor of Segr6 characteristic [(11)(11)], hence giving another proof of 
the existence of a K tensor in all those space-times (see Demianski and 
Francaviglia, 1980, Section 3). 

4. CONCLUSIONS 

To summarize, we can formulate the following theorem. 

Theorem. Let (V 4, g) be a vacuum type-D space-time. The follow- 
ing conditions are equivalent: 

(i) (V 4, g) is without acceleration. 
(ii) (V4, g) admits a S 2 separability structure and the metric 

g in canonical form satisfies condition (2.12). 
(iii) (V4, g) is one of Carter's separable space,times. 
(iv) (V4, g ) admits a K tensor of Segr6 characteristic 

[(11)(11)]. 
(v) (V4, g) admits a KY tensor. 

The equivalence of the above statements easily follows from the remarks of 
Sections 2 and 3. The theorem provides a link between several isolated 
pieces of information and it clarifies the relationship between separability 
and the existence of Killing and Killing-Yano tensors. 
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